Itô type measure-valued stochastic differential equations
نویسندگان
چکیده
منابع مشابه
strong approximation for itô stochastic differential equations
in this paper, a class of semi-implicit two-stage stochastic runge-kutta methods (srks) of strong global order one, with minimum principal error constants are given. these methods are applied to solve itô stochastic differential equations (sdes) with a wiener process. the efficiency of this method with respect to explicit two-stage itô runge-kutta methods (irks), it method, milstien method, sem...
متن کاملComplexity of Banach space valued and parametric stochastic Itô integration
We present a complexity analysis for strong approximation of Banach space valued and parameter dependent scalar stochastic Itô integration, driven by a Wiener process. Both definite and indefinite integration are considered. We analyze the Banach space valued version of the EulerMaruyama scheme. Based on these results, we define a multilevel algorithm for the parameter dependent stochastic inte...
متن کاملOn Singularly Perturbed Ordinary Differential Equations with Measure-valued Limits
The limit behaviour of solutions of a singularly perturbed system is examined in the case where the fast flow need not converge to a stationary point. The topological convergence as well as information about the distribution of the values of the solutions can be determined in the case that the support of the limit invariant measure of the fast flow is an asymptotically stable attractor.
متن کاملStochastic differential equations and integrating factor
The aim of this paper is the analytical solutions the family of rst-order nonlinear stochastic differentialequations. We dene an integrating factor for the large class of special nonlinear stochasticdierential equations. With multiply both sides with the integrating factor, we introduce a deterministicdierential equation. The results showed the accuracy of the present work.
متن کاملApproximate Solutions of Set-Valued Stochastic Differential Equations
In this paper, we consider the problem of approximate solutions of set-valued stochastic differential equations. We firstly prove an inequality of set-valued Itô integrals, which is related to classical Itô isometry, and an inequality of set-valued Lebesgue integrals. Both of the inequalities play an important role to discuss set-valued stochastic differential equations. Then we mainly state th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2007
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2006.07.029